Skip to Main Content

Oracle Database Discussions

Announcement

For appeals, questions and feedback about Oracle Forums, please email oracle-forums-moderators_us@oracle.com. Technical questions should be asked in the appropriate category. Thank you!

Interested in getting your voice heard by members of the Developer Marketing team at Oracle? Check out this post for AppDev or this post for AI focus group information.

ASM with iscsi devices

606331Jul 25 2010 — edited Jul 28 2010
Hi all,
My env :Oracle 10gR2,RHEL4.0,
I configured VM-ware (linux) iscsi disks with 6Gb (primary 3Gb extend 3G).I am trying to create ASM
But I am unable to start my iscsi devices .
is it any preconf required ?for iscsi
please let me know if any one knows .
This post has been answered by Mohamed ELAzab on Jul 25 2010
Jump to Answer

Comments

damorgan
iSCSI requires drivers. You don't mention installing any.
606331
ok thanks for ur reply,
I am not installed ISCSI drivers...
Regards,
kk.
Mohamed ELAzab
Answer
hello,
please read the following:
4. iSCSI Technology

For many years, the only technology that existed for building a network based storage solution was a Fibre Channel Storage Area Network (FC SAN). Based on an earlier set of ANSI protocols called Fiber Distributed Data Interface (FDDI), Fibre Channel was developed to move SCSI commands over a storage network.

Several of the advantages to FC SAN include greater performance, increased disk utilization, improved availability, better scalability, and most important to us — support for server clustering! Still today, however, FC SANs suffer from three major disadvantages. The first is price. While the costs involved in building a FC SAN have come down in recent years, the cost of entry still remains prohibitive for small companies with limited IT budgets. The second is incompatible hardware components. Since its adoption, many product manufacturers have interpreted the Fibre Channel specifications differently from each other which has resulted in scores of interconnect problems. When purchasing Fibre Channel components from a common manufacturer, this is usually not a problem. The third disadvantage is the fact that a Fibre Channel network is not Ethernet! It requires a separate network technology along with a second set of skill sets that need to exist with the data center staff.

With the popularity of Gigabit Ethernet and the demand for lower cost, Fibre Channel has recently been given a run for its money by iSCSI-based storage systems. Today, iSCSI SANs remain the leading competitor to FC SANs.

Ratified on February 11, 2003 by the Internet Engineering Task Force (IETF), the Internet Small Computer System Interface, better known as iSCSI, is an Internet Protocol (IP)-based storage networking standard for establishing and managing connections between IP-based storage devices, hosts, and clients. iSCSI is a data transport protocol defined in the SCSI-3 specifications framework and is similar to Fibre Channel in that it is responsible for carrying block-level data over a storage network. Block-level communication means that data is transferred between the host and the client in chunks called blocks. Database servers depend on this type of communication (as opposed to the file level communication used by most NAS systems) in order to work properly. Like a FC SAN, an iSCSI SAN should be a separate physical network devoted entirely to storage, however, its components can be much the same as in a typical IP network (LAN).

While iSCSI has a promising future, many of its early critics were quick to point out some of its inherent shortcomings with regards to performance. The beauty of iSCSI is its ability to utilize an already familiar IP network as its transport mechanism. The TCP/IP protocol, however, is very complex and CPU intensive. With iSCSI, most of the processing of the data (both TCP and iSCSI) is handled in software and is much slower than Fibre Channel which is handled completely in hardware. The overhead incurred in mapping every SCSI command onto an equivalent iSCSI transaction is excessive. For many the solution is to do away with iSCSI software initiators and invest in specialized cards that can offload TCP/IP and iSCSI processing from a server's CPU. These specialized cards are sometimes referred to as an iSCSI Host Bus Adaptor (HBA) or a TCP Offload Engine (TOE) card. Also consider that 10-Gigabit Ethernet is a reality today!

As with any new technology, iSCSI comes with its own set of acronyms and terminology. For the purpose of this article, it is only important to understand the difference between an iSCSI initiator and an iSCSI target.

iSCSI Initiator

Basically, an iSCSI initiator is a client device that connects and initiates requests to some service offered by a server (in this case an iSCSI target). The iSCSI initiator software will need to exist on each of the Oracle RAC nodes (racnode1 and racnode2).

An iSCSI initiator can be implemented using either software or hardware. Software iSCSI initiators are available for most major operating system platforms. For this article, we will be using the free Linux Open-iSCSI software driver found in the iscsi-initiator-utils RPM. The iSCSI software initiator is generally used with a standard network interface card (NIC) — a Gigabit Ethernet card in most cases. A hardware initiator is an iSCSI HBA (or a TCP Offload Engine (TOE) card), which is basically just a specialized Ethernet card with a SCSI ASIC on-board to offload all the work (TCP and SCSI commands) from the system CPU. iSCSI HBAs are available from a number of vendors, including Adaptec, Alacritech, Intel, and QLogic.

iSCSI Target

An iSCSI target is the "server" component of an iSCSI network. This is typically the storage device that contains the information you want and answers requests from the initiator(s). For the purpose of this article, the node openfiler1 will be the iSCSI target.

So with all of this talk about iSCSI, does this mean the death of Fibre Channel anytime soon? Probably not. Fibre Channel has clearly demonstrated its capabilities over the years with its capacity for extremely high speeds, flexibility, and robust reliability. Customers who have strict requirements for high performance storage, large complex connectivity, and mission critical reliability will undoubtedly continue to choose Fibre Channel.

Before closing out this section, I thought it would be appropriate to present the following chart that shows speed comparisons of the various types of disk interfaces and network technologies. For each interface, I provide the maximum transfer rates in kilobits (kb), kilobytes (KB), megabits (Mb), megabytes (MB), gigabits (Gb), and gigabytes (GB) per second with some of the more common ones highlighted in grey.

Also please refer to the following link:
http://www.oracle.com/technology/pub/articles/hunter_rac10gr2_iscsi.html
kind regards
Mohamed
Oracle DBA
Marked as Answer by 606331 · Sep 27 2020
Doublethink
bah bah bah , missing links

http://www.oracle.com/technology/pub/articles/hunter-rac11gr2-iscsi.html is not working


http://www.oracle.com/technology/pub/articles/hunter_rac10gr2_iscsi.html is not working

please help
1 - 4
Locked Post
New comments cannot be posted to this locked post.

Post Details

Locked on Aug 25 2010
Added on Jul 25 2010
4 comments
1,688 views